SVM Dual Optimization Visualizer
SVM Dual Problem
Maximize: \( \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \)
Subject to: \( \sum_{i} \alpha_i y_i = 0 \), \( 0 \leq \alpha_i \leq C \)
Parameters
1.0
Optimization Progress
Decision Boundary
Explanation
1. Dual Formulation: SVM finds α to maximize margin while minimizing error.
2. C Parameter: Controls trade-off between margin and misclassifications.
3. Kernel Trick: Maps data to higher dimensions for non-linear separation.
0 Comments