Lagrangian Duality Solver
Primal Problem
Minimize: \( f(x) = x^2 \)
Subject to: \( x \leq 1 \)
Lagrangian
\( L(x, \lambda) = x^2 + \lambda (x - 1) \)
1.0
Dual Function
\( D(\lambda) = \min_x L(x, \lambda) \)
Optimal x: 0.5
Dual Value: -0.25
Visualization
Explanation
1. Primal Problem: Minimize \( x^2 \) s.t. \( x \leq 1 \).
2. Lagrangian: \( L(x, \lambda) = x^2 + \lambda (x - 1) \).
3. Dual Function: \( D(\lambda) = \min_x L(x, \lambda) \).
4. Strong Duality: If \( \lambda \geq 0 \), the dual gives a lower bound on the primal.
0 Comments