Google stock price analysis in python

What are alternative sources to get financial data?

Google LLC is one of the world’s most influential technology companies, known for its dominant search engine and extensive suite of products and services. Here’s a comprehensive overview:
Company Overview
  • Name: Google LLC
  • Type: Public Limited Company (Subsidiary of Alphabet Inc.)
  • Industry: Technology and Internet Services
  • Headquarters: Mountain View, California, USA
  • Founded: September 4, 1998
  • Founders: Larry Page and Sergey Brin
Core Products and Services
  • Search Engine: Google Search is the company’s flagship product, providing the most popular and widely used internet search engine globally.
  • Advertising: Google’s primary revenue source comes from advertising through its platforms:
  • Google Ads: Allows businesses to advertise on Google Search and its partner sites.
  • YouTube Ads: Provides advertising opportunities on YouTube, which Google owns.
  • Cloud Computing:
  • Google Cloud Platform (GCP): Offers cloud computing services, including data storage, machine learning, and computing power.
  • Google Workspace: Suite of productivity tools including Gmail, Google Drive, Google Docs, Sheets, and Slides.
  • Mobile Operating Systems:
  • Android: The most widely used mobile operating system globally.
  • Wear OS: An operating system for wearable devices.
  • Web Browsing:
  • Google Chrome: A popular web browser known for its speed and security.
  • Hardware:
  • Pixel: Smartphones and other devices including smart home products.
  • Nest: Smart home products like thermostats, cameras, and doorbells.
  • Digital Services:
  • YouTube: A leading video-sharing platform.
  • Google Maps: Provides mapping and navigation services.
  • Google Photos: Cloud-based photo storage and sharing service.
  • Google Assistant: A virtual assistant powered by AI.
Market Position
  • Global Reach: Google has a significant presence worldwide, serving billions of users through its various products and services.
  • Revenue: The company generates substantial revenue primarily through advertising. Its diverse business model includes cloud services, hardware, and digital content.
Financial Performance
  • Revenue Growth: Google has shown consistent revenue growth, driven by its dominant position in search advertising and expanding cloud services.
  • Profitability: The company is highly profitable, with a strong market capitalization and financial stability.
Key Achievements
  • Innovation: Google is known for its innovation in technology, particularly in search algorithms, AI, and machine learning.
  • Acquisitions: The company has acquired numerous companies to expand its capabilities, including major acquisitions like YouTube, Android, and Fitbit.
Strategic Initiatives
  • Artificial Intelligence: Google is a leader in AI research and development, including advancements in natural language processing and machine learning.
  • Quantum Computing: The company is actively involved in developing quantum computing technologies.
  • Sustainability: Google is committed to sustainability and has achieved carbon neutrality. It aims to operate entirely on renewable energy.
Stock Market
  • Listing: Google’s parent company, Alphabet Inc., is listed on NASDAQ under the ticker symbols GOOG and GOOGL.
  • Stock Performance: Google’s stock has shown significant growth over the years, reflecting its success and market dominance.
Leadership
  • CEO: Sundar Pichai, who became CEO of Google in 2015 and Alphabet Inc. in 2019.
  • Founders: Larry Page and Sergey Brin, who originally led the company and now focus on other projects within Alphabet Inc.
Corporate Social Responsibility (CSR)
  • Community Engagement: Google engages in various CSR activities, including education, diversity, and inclusion initiatives.
  • Philanthropy: Through Google.org, the company supports various charitable causes, including disaster relief and digital literacy.
Recent Developments
  • Regulatory Challenges: Google faces regulatory scrutiny and legal challenges related to antitrust issues, data privacy, and competition.
  • Product Expansions: The company continues to expand its product offerings and enter new markets, including advancements in hardware and emerging technologies.
Alphabet Inc.
  • Parent Company: In 2015, Google restructured to become a subsidiary of Alphabet Inc., a holding company that oversees various other businesses and projects. Alphabet allows Google to focus on its core businesses while other ventures operate more independently.

Analyzing Google's stock price using Python involves collecting historical price data, performing data analysis, and creating visualizations to gain insights into the company's stock performance. Here's a step-by-step guide on how to conduct Google stock price analysis in Python:


Import Libraries:
Start by importing the necessary Python libraries for data manipulation, analysis, and visualization. Commonly used libraries include pandas, numpy, matplotlib, and yfinance to fetch historical data:

python
Copy code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
Data Retrieval:
Use the yfinance library or other financial data sources to fetch historical data for Google's stock. Specify the start and end dates for the data you want to analyze:

python
Copy code
google = yf.download('GOOGL', start='2020-01-01', end='2021-12-31')
Data Exploration:
Explore the fetched data to understand its structure and contents. Use functions like head(), tail(), describe(), and info() to inspect the dataset:

python
Copy code
print(google.head())
Data Visualization:
Create visualizations to analyze the historical performance of Google's stock. Common visualizations include line charts to visualize price movements:

python
Copy code
plt.figure(figsize=(12, 6))
plt.plot(google['Adj Close'], label='Google')
plt.title('Google Stock Price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.show()
Technical Analysis (Optional):
Perform technical analysis by calculating and visualizing technical indicators like moving averages, relative strength index (RSI), and MACD. Libraries like ta-lib can be used for these calculations.

Statistical Analysis (Optional):
Conduct statistical analysis to calculate summary statistics, volatility measures, and correlations with other assets. numpy and pandas are useful for these calculations.

Sentiment Analysis (Optional):
Consider incorporating sentiment analysis of news articles or social media data related to Google to understand market sentiment's impact on the stock price.

Fundamental Analysis (Optional):
Analyze fundamental factors affecting Google, such as earnings reports, revenue growth, and market share, which can influence the stock's performance.

Prediction and Forecasting (Optional):
You can use time series forecasting techniques like ARIMA or machine learning models to make predictions about future Google stock price movements.

Risk Management and Decision Making:
Based on your analysis, formulate investment strategies, set risk management parameters, and make informed investment decisions regarding Google's stock.

Regular Updates:
Keep your analysis up to date with the latest data to adapt to changing market conditions and make timely decisions.

Remember that investing in stocks carries risks, and it's crucial to do thorough research, consider factors like company news and market trends, and potentially consult with financial experts before making investment decisions based on your analysis of Google's stock price or any other stock.
What are alternative sources to get financial data?
There are a number of alternative sources like Quandal,intrinio,google others.

How to get financial data from Google in Python?

!pip install yfinance
import pandas as pd
import numpy as np
import yfinance as yf
df = yf.download('GOOG',
 start='2020-01-01',
 end='2021-08-28',
 progress=False)
df.tail(9)

OpenHighLowCloseAdj CloseVolume
Date
2021-08-172763.8200682774.3701172735.7500002746.0100102746.0100101063600
2021-08-182742.3100592765.8798832728.4199222731.3999022731.399902746700
2021-08-192709.3500982749.0400392707.1201172738.2700202738.270020914800
2021-08-202741.6599122772.2900392729.3400882768.7399902768.739990778200
2021-08-232779.9699712843.5400392774.9589842821.9899902821.9899901054500
2021-08-242830.8701172860.1499022827.0700682847.9699712847.969971756300
2021-08-252857.6599122866.2600102848.7900392859.0000002859.000000641900
2021-08-262852.3701172862.6960452841.8300782842.4599612842.45996174610
import matplotlib.pyplot as plt

How to plot google close price?

df['Close'].plot(figsize=(12,8))
<matplotlib.axes._subplots.AxesSubplot at 0x7fb1102efb90>
google stock close price

How to plot Google close price and volume?

df[['Close''Volume']].plot(subplots=True, style='b',
figsize=(128))
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7fb1101eed90>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7fb10fd55d90>],
      dtype=object)
google stock price and volume

How to describe the mean median and other statistics?

df.describe()
df['simple_rtn'] = df.Close.pct_change()
df['log_rtn'] = np.log(df.Close/df.Close.shift(1))
df['log_rtn'].plot(subplots=True, style='b',
figsize=(128))
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7fb10fc48150>],
      dtype=object)
google closing stock price

How to convert Stock prices into log and simple returns in Python?

df['log_rtn'].tail(12)
Date 2021-08-12 0.005071 2021-08-13 0.000119 2021-08-16 0.003678 2021-08-17 -0.011698 2021-08-18 -0.005335 2021-08-19 0.002512 2021-08-20 0.011066 2021-08-23 0.019050 2021-08-24 0.009164 2021-08-25 0.003865 2021-08-26 -0.005802 2021-08-27 0.016936 Name: log_rtn, dtype: float64
import cufflinks as cf
from plotly.offline import iplot, init_notebook_mode
init_notebook_mode()
df_rolling = df[['simple_rtn']].rolling(window=21) \
.agg(['mean''std'])
df_rolling.columns = df_rolling.columns.droplevel()
df_outliers = df.join(df_rolling)
import pandas as pd
import numpy as np
import yfinance as yf
import seaborn as sns
import scipy.stats as scs
import statsmodels.api as sm
import statsmodels.tsa.api as smt
df = yf.download(['GOOG''^VIX'],
start='1985-01-01',
end='2021-08-28',
progress=False)
df = df[['Adj Close']]
df.columns = df.columns.droplevel(0)
df = df.rename(columns={'GOOG''goog''^VIX''vix'})
df.tail()
df['log_rtn'] = np.log(df.goog / df.goog.shift(1))
df['vol_rtn'] = np.log(df.vix / df.vix.shift(1))
df.dropna(how='any', axis=0, inplace=True)
corr_coeff = df.log_rtn.corr(df.vol_rtn)
corr_coeff = df.log_rtn.corr(df.vol_rtn)
ax = sns.regplot(x='log_rtn', y='vol_rtn', data=df,
line_kws={'color''red'})
ax.set(title=f'GOOG vs. VIX ($\\rho$ = {corr_coeff:.2f})',
ylabel='VIX log returns',
xlabel='GOOG log returns')
[Text(0, 0.5, 'VIX log returns'),
 Text(0.5, 0, 'GOOG log returns'),
 Text(0.5, 1.0, 'GOOG vs. VIX ($\\rho$ = -0.48)')]

How to compare the stock price of Google and vix?

google and vix stock price
r_range = np.linspace(min(df.log_rtn), max(df.log_rtn), num=1000)
mu = df.log_rtn.mean()
sigma = df.log_rtn.std()
norm_pdf = scs.norm.pdf(r_range, loc=mu, scale=sigma)
fig, ax = plt.subplots(12, figsize=(168))
# histogram
sns.distplot(df.log_rtn, kde=False, norm_hist=True, ax=ax[0])
ax[0].set_title('Distribution of GOOG returns', fontsize=16)
ax[0].plot(r_range, norm_pdf, 'g', lw=2,
label=f'N({mu:.2f}{sigma**2:.4f})')
ax[0].legend(loc='upper left');
# Q-Q plot
qq = sm.qqplot(df.log_rtn.values, line='s', ax=ax[1])
ax[1].set_title('Q-Q plot', fontsize = 16)
distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

How to plot google distribution of stock price and Q-Q plot?

Text(0.5, 1.0, 'Q-Q plot')
google stock price distribution and qq plot return

How to plot Google's daily stock return?

df.log_rtn.plot(title='Daily GOOG returns')
<matplotlib.axes._subplots.AxesSubplot at 0x7fb0ecf04dd0>
google stock price daily return
N_LAGS = 50
SIGNIFICANCE_LEVEL = 0.05
acf = smt.graphics.plot_acf(df.log_rtn,
lags=N_LAGS,
alpha=SIGNIFICANCE_LEVEL
)

How to plot Google's absolute return and autocorrelation?


fig, ax = plt.subplots(21, figsize=(1210))
smt.graphics.plot_acf(df.log_rtn ** 2, lags=N_LAGS,
alpha=SIGNIFICANCE_LEVEL, ax = ax[0])
ax[0].set(title='Autocorrelation Plots',
ylabel='Squared Returns')
smt.graphics.plot_acf(np.abs(df.log_rtn), lags=N_LAGS,
alpha=SIGNIFICANCE_LEVEL, ax = ax[1])
ax[1].set(ylabel='Absolute Returns',
xlabel='Lag')
[Text(0, 0.5, 'Absolute Returns'), Text(0.5, 0, 'Lag')]
google stock price absolute return

How to plot Google 252 days and 21 days moving volatility?

df['moving_std_252'] = df[['log_rtn']].rolling(window=252).std()
df['moving_std_21'] = df[['log_rtn']].rolling(window=21).std()
fig, ax = plt.subplots(31, figsize=(1815),
sharex=True)
df.plot(ax=ax[0])
ax[0].set(title='GOOG time series',
ylabel='Stock price ($)')
df.log_rtn.plot(ax=ax[1])
ax[1].set(ylabel='Log returns (%)')
df.moving_std_252.plot(ax=ax[2], color='r',
label='Moving Volatility 252d')
df.moving_std_21.plot(ax=ax[2], color='g',
label='Moving Volatility 21d')
ax[2].set(ylabel='Moving Volatility',
xlabel='Date')
ax[2].legend()
<matplotlib.legend.Legend at 0x7fb0e4997e50>
google stock price volatility



New Updates of Google Stock Price Analysis

Post a Comment

0 Comments